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Abstract—In this paper, we present the method of building a 
scalable, real-time inference platform for large-scale time-series 
anomaly detection and root-cause analysis solutions, built as a part 
of AI For Operations (AIOps) tool. AIOps is a tool built to ease the 
manual and time-consuming activities of DevOps engineers 
involved in monitoring and troubleshooting production systems. 
Such a system has to be operated in real-time to detect anomalies 
in a plethora of time-series metrics and logs from the productions 
systems in order to provide timely alerts and possible root causes 
for quick remediation and thus requires a low-latency operation. 
This system must be scalable for the vast amounts of data involved 
for ETL and ML inference jobs that the solution needs. In this 
work, we show how we engineered and scaled up the AI research 
POC to a solution that supports a massive search engine system, 
where we achieved reduction in latency by 30x. We also evaluate 
different tools for inference such as Apache Airflow, Serverless 
REST API and Spark engine and demonstrate our improvements 
achieved and our estimations of these different commonly used 
platforms for ML inference, in terms of feasibility and cost for an 
AIOps solution. 

Keywords—AIOps, time-series, anomaly-detection, root-cause 
analysis, model inference 

I. INTRODUCTION 
“AIOps” [1] is a portmanteau of Artificial Intelligence (AI) 

which comprises Machine Learning (ML) and Deep Learning 
(DL) and Information Technology (IT) Operations. As per 
Gartner’s 2022 Market Guide [2], AIOps is going to be future of 
IT Operations. AIOps platforms analyze application, system 
metrics, telemetry events and application logs to identify 
patterns and trends to understand the behavior of the system. 
AIOps platform is designed with the following characteristics 
[3][4]: (1) ability to ingest and analyze cross-domain data, (2) 
perform dependency graph analysis across different stacks and 
services, (3) correlate events to understand the patterns to detect 
incidents, and (4) predict possible hypothesis towards the root 
cause analysis and recommend solutions. AIOps refers to the 
timely identification of IT operation issues using AI/ML. While 
MLOps refers to the deployment and operations of ML models 
and DevOps refers to software development and operations, 
AIOps is different from them as its applicable to MLOps or 
DevOps to make them more robust and cost effective (Fig. 1). 

Availability of mission critical applications are crucial, and 
any outages can directly influence business revenue and 
customer satisfaction. A reliability engineer may need to get into 
a crisis call in the middle of the night to fix a critical issue in the 
field. AIOps is designed to act as a third hand to the engineer to 
help in resolving the issue faster and thereby, reducing mean 
time to failure (MTTF) and to resolve (MTTR) the issue [5]. 
AIOps operates with continuous time series data. Since the 
volume of data processed is huge and the system must operate 
in real time, scalability of the system across different stages of 
AIOPs is critical. This paper discusses on resolving challenges 
related to scalability and the best practices for achieving a highly 
scalable real-time AIOps platform. 

The rest of the paper is organized as follows. In Section II, 
we discuss related work in literature on AIOps and scalability. 
In Section III, we explain the scope and requirements of the 
AIOps product and the various problems and challenges that we 
encountered in the practical real-life implementation. In Section 
IV, we propose solutions and elucidate how we tackled each of 
the problems present in different components of our AIOps 
platform. Finally, in Section V, we provide our conclusion and 
also discuss other potential options for further optimizations and 
our future evaluation considerations with respect to building a 
scalable real-time AIOps product. 
 

Fig. 1. AI For IT Operations (AIOps) 

 



II. LITERATURE REVIEW 
The different features and requirements for an AIOps 

solution have been discussed in multiple forums and in literature 
such as [3] and [4]. These works discuss the impact of AIOps 
product in an IT organization and the value that it brings to 
DevOps teams, the quality of service, reduction in operations 
cost, and customer satisfaction achieved. Only very few works 
discuss the challenges involved in bringing valuable research 
knowledge into a scalable viable product that can add real 
business value for an organization. 

As we can see from [6] where a systematic mapping study 
has been done on the various literary works available related to 
AIOps, we see how the focus has been on building different 
valuable solutions in the IT Operations space such as Resource 
Provisioning, Failure Detection, Failure Prediction, Root Cause 
Analysis, Prevention and Remediation that are used in the 
AIOps platform development. Such solutions have been offered 
by multiple AIOps platforms that may offer a subset of these 
solutions or all of them. One such AIOps platform development 
can be seen in [7] where an AIOps product has been built to 
address solutions ranging from Anomaly Detection and Smart 
Alerting, Automatic Root Cause Analysis (RCA) from Logs, 
RCA through multiple Metric Correlations using dependency 
graphs of services, Auto-remediation and Failure Prevention 
solution, Intelligent Orchestration for Cost Efficiency and 
Release Management. 

As noted in [2], the main barrier for AIOps platforms is the 
difficulty in measuring the value created from the usage of such 
products. To fully measure the impact created by such a tool, the 
tool has to be designed to operate at scale at nominal costs and 
offer quick results for the operators to find meaning in the 
adoption. But it is to be noted that enterprises are rapidly 
adopting AIOps solutions; and the costs and complexities 
involved in managing, storing and handling data at scale are still 
major challenges for AIOps platform developers. In [8], the 
authors discuss some of the real-world challenges that they faced 
while implementing their AIOps solution in production and 
discuss the research innovations performed to create a few 
successful AIOps solutions that they built in their products. The 
various challenges related to data quality, efficiency of AI and 
ML, limitation in use case availability, etc. are also reviewed in 
detail in [9]. 

This paper discusses the practical challenges involved in 
building an AIOps product, specifically in terms of 
infrastructure scalability, that must be handled while building 
such innovative ML products that most of the works in literature 
do not discuss explicitly. This way, we complement the existing 
research works by providing a more detailed paper on the 
various techniques and solutions we have engineered to solve 
some of the complexities involved in building a production-
grade AIOps platform from a research Proof-of-Concept (POC). 
We have evaluated different tools and engineering solutions 
while trying to scale up the product to handle large-scale loads 
involved in an application that caters to the massive search and 
browse engine workloads of a real-world commercial product 
and have presented the results that we obtained. 

III. SCALABILITY CHALLENGES 
The AIOps solution requires a highly scalable, real-time 

operations in multiple verticals such as: (1) data ingestion or 
extract-transform-load (ETL) pipeline, (2) Machine Learning 
(ML) model inference, (3) alerting or notification scheme, and 
(4) root cause analysis and reporting solutions. There are 
multiple challenges to be addressed in implementing these 
solutions for the product to be effective. 

Operation metrics are time-series in nature as the telemetry 
data are collected from across multiple services at different 
instances in time. The nature of the time-series data vary vastly 
from metric to metric, and they are also dynamic in nature and 
can change over time. Most of the system metrics are collected 
from multiple sources, and such metrics collected and stored in 
an operations data collection and monitoring solution like 
Prometheus [10], have different labels which denote the 
metadata for identifying the source of the time-series. In real 
production systems such as the one we handle, we observe that 
one metric can have even 1000 time-series data or more at a 
given instance, which are collected from different sources. If the 
sources are dynamically destroyed and created, such as in the 
case of Kubernetes Pods when a new release deployment takes 
place, the existing metric time-series data from the destroyed 
instances cease to appear and new ones appear. Thus, over a 
period, the number of unique time-series data within a single 
metric keeps growing. We also observe that some metrics 
disappear and re-appear after some time, especially in case a 
service is restarted after a maintenance period. We require 
operations monitoring on 100s or more of such metrics, which 
is a perfect example of the extent of complexities involved in the 
data management. 

To counter these challenges, data ingestion or ETL pipeline 
must be scalable to support such large volumes of data. It should 
be a low-latency streaming solution, but operations metrics 
stored in databases like Prometheus can only be fetched by 
querying data over its REST API as there is no push mechanism 
to send the telemetry data collected to some external streaming 
service. These offer limitations in the choice of ETL service. 
Also, performing a very large number of metric queries to the 
source metric storage can overwhelm the system, leading to 
increased latency, more frequent HTTP request failures, and 
slow response times in dashboards used by operators manually 
monitoring other system metrics. Thus, the ETL operation must 
prevent such client-side resource (CPU or memory) overloading 
too. 

Also, the nature of the time-series in terms of magnitude, 
periodicity or seasonality, trend, stochasticity, etc., vary from 
metric to metric and between the different time-series within a 
metric. Hence, we don’t have a “one-fit-for-all” ML model 
solution for all time-series data. Since the operations data is 
unlabeled by default, unsupervised time-series anomaly 
detection algorithms are used to fit on the data over a suitable 
time period, to capture the trends and seasonality present in the 
data. By allowing an annotation option through a user-interface 
(UI), we also make use of supervised classification algorithms 
to detect anomalies using the labelled anomalous points. A 
plethora of algorithms are available to fit on multiple metrics 
and even if a model fits on a particular pattern of data, when 



deployed for inference on multiple time-series metrics data, the 
threshold chosen for detecting anomalies using the anomaly 
score computed by the model needs some careful setting for 
each of the data. Therefore, even if our solution enables us to 
choose certain trained models to be deployed for multiple time-
series inference, we still may have to fine-tune the model or 
adjust the thresholds for each of them by having a human-in-the-
loop for more accurate inference. A system with automated 
unsupervised model training and inference can still benefit from 
a feedback mechanism for fine-tuning models or adjusting 
thresholds that improves the overall performance in terms of 
prediction accuracy. Thus, it is difficult to go for a distributed 
environment like Apache Spark [11] for this operation as there 
is no single model used for multiple data inference (single big 
and complex task), rather multiple fine-tuned specific models, 
performing inference on individual or a small subset of related 
data. The conclusion — it is not straightforward to use that 
distributed framework for inference. 

The main goal of an AIOps tool is to provide operators with 
timely alerts that notify the team of an anomaly in some 
monitored metric that helps them attend to and rectify quickly 
before a major outage occurs. Our infrastructure has to be robust 
in handling the rules for checking and sending alerts and must 
be scalable to support the operations for all inference jobs that 
would be making predictions every minute. It must have a very 
low latency and send alerts instantly. 

With the addition of features that are targeted to reduce the 
MTTR of the operators such as RCA solutions that correlate 
detected metric anomalies with error log trends or other metric 
anomalies, we have a need to perform this at scale and send the 
RCA report instantly for a quick fix. A naive, simple solution of 
sequentially checking the anomaly trend correlations with every 
metric (ignoring the complexities involved in fetching a block 
of data from feature store and in computing correlation 
coefficient) will have a linear time complexity of O(n), where 
‘n’ is the number of time-series metrics. Since ‘n’ could be as 
large as one million and this computation has to happen for an 
anomaly detected on a selected metric at a selected minute, 
getting a quick RCA report for an operator to act upon, is highly 
difficult in this setup. It becomes more impractical as we can 
have multiple alerts and this can occur every minute. Thus, we 
require a better optimal approach for handling such 
computations. 

The following Table I displays the initial operational 
statistics of the actual use cases 1 and 2 which are explained in 
Section IV. The numbers represent the scale at which the AIOps 
platform had to operate for real-time operations at reduced 
latencies and thus presented us with the challenges during the 
initial POC stage that we just discussed. 

TABLE I.  INITIAL OPERATIONAL STATISTICS 

a. Without including count of time-series in the metrics removed from the 38400 metrics 

IV. SOLUTION METHODOLOGY AND RESULTS 
As the tool must operate in real-time, there is a requirement 

to periodically fetch data from source and perform inference on 
them. Thus, we need a scheduler. Initially, we used a cron-based 
scheduled script to fetch the operations data, transform and store 
the results in comma-separated values (CSV) files in disk in a 
monolithic architecture where a UI dashboard, the training, 
inference and alerting jobs (cron), and a rules engine, were all 
hosted within the same instance and coupled tightly together. As 
this solution limits the operations to just one instance, to deploy 
a solution in cloud that is independently horizontally scalable 
and loosely coupled, we went for a microservices architecture 
with separate services for different components. The various 
services perform their tasks independently and access shared 
resources such as the feature store and metadata store. To 
streamline the operations, we used a workflow management tool 
Apache Airflow [12] which was used as a scheduler and an 
orchestrator of various tasks such as data ingestion, log data 
mining and log metrics creation, model inference, alert rules 
evaluations and notifications, by dynamically defining tasks for 
different use cases and metrics as Directed Acyclic Graphs 
(DAG). This migration from a monolithic to a microservice 
architecture hosted in cloud, helped us have the AIOps solution 
built for simpler use cases with few metrics (say, <100). In 
particular, we used it to monitor the load of prediction requests 
made to a computer vision ML model deployed in a home 
security product (use case 1). This helped DevOps team detect 
anomalies in the observed seasonal load pattern and find out root 
cause error logs for immediate remediation. However, we faced 
the scalability challenges (Section III) when we onboarded use 
case 2, to monitor the operations of different microservices 
available in a large-scale relevance engine application that 
powers the search and browse features in products like voice 
remote, personalized content discovery services, etc. The 
following subsections discuss how we addressed the different 
challenges and the performance gains achieved in building the 
AI powered operations monitoring and automated RCA tool 
having an impactful usage in IT observability domain. 

A. Scalability in Data Ingestion 
The scheduling interval used in Airflow was one (1) minute 

and so the data ingestion task was expected to get completed in 
<1 minute. But, when we ingested data from a large-scale 
system, we ended up with more than 38400 metrics that resulted 
in 3 x 38400 data ingestion tasks. As we had to train and deploy 
models for ~1050 time-series metrics per data-center (we had 8 
such data-centers), we had a very large number of tasks for 
model inference and alerting as shown in Table I. Even though 
Airflow is theoretically capable of handling such loads, 
practically with limited number of worker nodes, schedulers, 
and worker resources, especially when operated in a managed 
cloud environment, Airflow gets overwhelmed and freezes. 
Such a large number of metric requests cannot be handled by the 
client Prometheus or Thanos instance too.  

We initially dropped about 74% of the metrics from the total 
based on the understanding that they carry redundant 
information captured by other metrics or were not significant for 
the operators. This reduced count of metric is still not feasible 
for data ingestion and so we worked on optimizing the number 
of queries we make to the HTTP endpoint by combining metric 

Use 
Case 

Data Average Airflow Tasks (Per Minute) 

Metric Time-
series ETL Inference Alerting 

1 1 961 3 x 1 3 x 1 4 x 1 + 1 

2 38400 73633a. 3 x 38400 3 x 8400 4 x 8400 + 1 



queries using clauses such as group by, and thereby increasing 
the number of time-series per metric query and thus ending up 
with the same total number of metric data that we want to ingest 
and monitor. This way, we reduced the number of metrics 
significantly by up to a further 97% but we found that certain 
queries are computationally expensive at the client end and split 
some metrics to finally end up with 425 metrics — a 95% 
reduction in number of metric queries that we have to make. This 
way, we have provided a user-configurable settings for ingesting 
metric data that can perform the ETL task without overloading 
both the client side as well as the Airflow environment. We also 
reduced the count of tasks to 426 per minute by combining them. 

As we moved from CSV files in cloud object storage to a 
feature store more suited for metric time-series as explained in 
the next section, where the write operation is optimized by 
having a separate service that is independently scalable and 
performs parallel write through multiprocessing over multiple 
cores, we achieved a reduction in ETL latency for a single metric 
for a single DAG Run from ~20 minutes to ~10 seconds which 
is almost ~99% improvement. The CSV-based feature store 
required additional overheads of reading and writing files and 
offered limited concurrency because of an aggregation that we 
also do over all the fetched metric time-series. 

However, to have an automated way of onboarding a client 
application without the need to specify optimal configurations, 
we are setting up an instance of Thanos at our end to replicate 
the data at the client side by having a sidecar container at the 
client end that pushes the metrics data to this instance. This will 
be configured to scale independently depending on the load of 
ETL activities, thereby not affecting any client operations. This 
ensures a smooth scalable, low-latency data ingestion pipeline 
for transforming and storing as time-series data as needed for 
visualization and ML models. 

B. Scalability in Feature Store 
The choice of a time-series database (TSDB) as a feature 

store is crucial from the perspective of scalability, number of 
read-write threads hitting the feature store, and the required 
latency in read-write operations. Also, the database used for 
feature store is expected to scale up horizontally according to the 
number of read-write requests made and vertically according to 
the required granularity and period of data per request. 

• TSDB vs other DBs: Compared to other databases, 
TSDBs provides faster and economic read-write 
operations for time-series data with proper data schema 
specific to time-series data. They also help in 
performing efficient aggregation and imputation queries 
over time-series data. Some TSDB solutions are 
optimized for tier-based data access where read 
operations are optimized for both recent and historical 
data while write operations are optimized for recent 
data, making both ingestion and reading faster, along 
with a common query engine for all the storage tiers. 
TSDB are timestamp indexed, making them efficient for 
large-scale sequential data. They also avoid data 
duplication and maintains data order despite ingestion 
request order. This allows clients to run parallel workers 
for the data ingestion jobs without worrying about the 
order in which the jobs are executed. 

• Serverless vs Server-based: Serverless TSDB allows us 
to have a highly available database service without 
having to maintain a server — this is becoming a 
popular choice in cloud-native deployments. Serverless 
DB services can scale as per the fluctuations in demand 
and can process millions of queries per day. 

An application programming interface (API) built as a layer 
between AIOps platform as a client and TSDB as a server is used 
to transform and load data to the TSDB such that it can divide 
the data to run multiple parallel processes based on available 
resources on the host. The API layer was built in such a way that 
it could scale horizontally depending upon the number of 
requests made for different activities like (1) pushing metric data 
from data ingestion tasks, (2) pulling data for inference jobs or 
showing in dashboard user-interface (UI) for visualization, etc., 
(3) pushing predictions data from inference jobs, and (4) pulling 
predictions data for checking alerts or for RCA. A scalable 
container orchestration service is used to deploy, manage, and 
scale the containerized application on a cluster with a serverless 
configuration that helps us achieve an interface that is 
independently scalable with respect to the load of read and write 
operations, which in turn depends on the number of use-cases 
and metrics configured for real-time anomaly inference. The 
API layer processes the data for writing and pushes the records 
in batches through multiprocessing over available cores by 
dividing the data into equal length chunks. TSDB v1 
implementation does not maintain common attributes for 
dimensional values common for a particular time-series, causing 
highly redundant write operations, while TSDB v2 
implementation uses common attributes saving writing costs 
and improving latency in write operations. The improvements in 
read and write latencies with the changes made in the feature 
store backend have been presented in Table II. 

TABLE II.  OPERATION LATENCY IN DIFFERENT FEATURE STORE FOR A 
SAMPLE 25KB DATA PROCESSED PER REQUEST 

 

C. Scalability in Model Inference 
As we have multiple models used for inference for multiple 

time-series metrics, we need a low-latency, real-time, scalable 
solution. When we used Airflow for this task, we performed all 
the heavy activities like loading the data and model in memory 
and performing model inference within Airflow tasks. Since 
Airflow is designed primarily to serve as an orchestrator and not 
intended for heavy tasks, the inference performance was poor. 
The following sections discusses the performance 
improvements obtained in moving from Airflow to further 
optimized, scalable solutions that we designed and deployed. 

a) Initial Airflow-based Inference (I1): From Fig. 2, we 
observe a very large memory consumption of ~1823 MB for a 
single cold-start (typically ~4 weeks) prediction as the task 
loads model and data in memory, performs anomaly predictions 

Operation 
Database 

Simple cloud 
storage TSDB v1 TSDB v2 

read ≅ 1 s ≅ 1 s ≤ 10 ms 

write ≅ 15 min ≅ 36 s 3 s 



and saves results back to feature store. To accommodate such 
scenarios of peak memory when a new data is scheduled for 
detecting anomalies, we had to restrict the number of tasks per 
worker node in Airflow as all tasks within a worker node share 
the resources. If resources aren’t enough, tasks get killed and 
the DAGRun fails. Therefore, I1 limited the task concurrency 
which in turn increased the execution times of Airflow DAGs. 
We also observed a significant latency of 4s for a single real-
time inference task. To avoid overwhelming Airflow, we 
reduced the number of tasks by having concurrency at metric 
level instead of at individual time-series level. So, we had to 
perform inference for each scheduled time-series metric present 
in a metric linearly, as worker nodes have limited cores which 
are already shared amongst tasks. This leads to large delays as 
the individual inference latency is scaled linearly by the number 
of time-series data configured with anomaly detection models 
trained, at different granularities and aggregations. 

Fig. 2. Memory (top) and Latency (bottom) in Airflow Task in I1, I2, I3 

Fig. 3. Memory (left) and Latency (right) in Serverless Instance in I3 

b) Inference through scalable, serverless REST API 
compute instances (I2): In this modification to I1, we deployed 
2 serverless compute instances that are independently 
horizontally scalable based on the number of function 

invocations (load). One gets triggered when new models are 
saved and deployed in an object store and downloads them into 
an elastic storage which provides a network file system (NFS) 
interface. The second loads models from this storage into 
memory and performs the inference job when invoked via 
HTTP REST API, reads the metadata of the metrics and models 
from the API request and sends the results back to the client to 
save into feature store. This function also caches the models to 
quickly serve in subsequent invocations of the same model and 
only has to load from the storage when a new version of a model 
is deployed. From Fig. 2, we can see that this architecture has 
reduced the peak memory consumption in Airflow tasks during 
cold start significantly and the model inference job is offloaded 
out of Airflow. This helps us have an Airflow environment with 
more concurrent operations. The reduced load also makes the 
system more reliable and helped us in saving Airflow costs by 
upto 55% as we can reduce the resources of worker nodes. 
However, the latency of the overall DAGRun was still 
significant even though the individual task latency dropped by 
50% as the inference job for each time-series still had to be 
executed sequentially in the Airflow tasks as each inference job 
is a blocking operation and the task waits for API response that 
needs to be saved to feature store before going to the next job. 

c) Inference through scalable, serverless message queue 
triggered compute instances (I3): The motivation on further 
improvement in architecture from I2 was to reduce the latency 
of the overall operations by having more concurrency in the 
individual time-series inference jobs. For this, we replaced the 
REST API trigger with a message queue based event-driven 
architecture for the 2nd serverless compute to have non-blocking 
invocations decoupling Airflow from model inference step. 
Loading data from feature store, saving predictions back and 
sending alert checking messages to its queue, are handled 
within the compute instances making the Airflow tasks fast and 
extremely light-weight as can be seen from Fig. 2 that shows an 
execution time of ~1s and peak memory consumption of 
~180MB. To avoid race condition of making multiple inference 
job invocations before the previous job is completed for a given 
time-series, the status of the running state and the last predicted 
timestamps are stored and handled separately through a 
relational database, making the entire inference job scalable, 
reliable and fast. The operational costs involved in the 
serverless instances offset the cost savings obtained from 
Airflow operations. The latency and peak memory 
consumption in the serverless compute functions do not exceed 
any limits that can cause any deterioration in performance as 
seen from Fig. 3. Due to the decoupled architecture, the 
inference jobs have more concurrency and were observed to 
complete within 1 minute for the entire metric, which helped in 
achieving 30x reduction in latency from I1 architecture. 

D. Scalability in Alert Notification Scheme 
The major objective of AIOps is to reduce the crucial MTTR 

metric for operation teams in their triaging activities [5] since its 
reduction directly correlates to customer experience and revenue 
in terms of customer retention or acquisition. The most intuitive 
way to reduce MTTR is by making our AIOps platform 
operations (near) real-time by sending timely alerts and reports 

 

 



to operators if abnormality is observed. This reduces the delay 
between the actual issue occurrence and the acknowledgement 
by the concerned team for triage. In this subsection, we discuss 
the approaches taken to evolve our platform for scalability with 
respect to this alerting need. We can roughly estimate MTTR as 

 o + a + ack + t » MTTR (1) 

o – AIOps platform operations delay (ETL, Inference),  

a – Alerting lag, 

ack – Operator acknowledgement delay, 

t – Triage delay 

The first part of (1) i.e., o has been discussed in earlier 
subsections. In this subsection, we focus on reducing a and ack. 
While the initial POC had an acceptable delay of ~1-5 mins 
w.r.t. alert notifications, we faced the following critical 
challenges while onboarding the large-scale application: 

1) Huge delays in alerting: Alerting delay a in (1) has to be 
as low as possible (near real-time) so that an issue is 
acknowledged quickly to start the triaging activity. Using CSV 
files in cloud store, we faced delays of over 30 mins for getting 
alerts, which dissolves the purpose of our tool for reducing 
MTTR. Majority of this delay was introduced by file 
input/output (I/O) and network delays in API calls. Also added 
to this, the nature of data (time-series) stored in CSV was not 
ideal for the scale of operations we target since we require 
additional post-processing for using that data. All these delays 
cascaded when we used Airflow scheduler for alerting too, 
where the the limited worker resources get blocked out for other 
critical functions and so affected the total latency. 

2) Race condition: We maintained states essential for 
alerting feature (like last alerted timestamp, pause status and 
duration if alert is paused) in CSV files stored in cloud object 
storage. When multiple Airflow tasks access the state file 
simultaneously (race condition), it causes inconsistencies in file 
leading to EOF (End of File) errors while parsing a read CSV 
file, being updated at the same time. 

For these observed scalability challenges, the following 
approaches were adopted to tackle them (refer Fig. 4, Table III): 

a) Using RDBMS for states: Since using CSV files for 
maintaining alerting states was not optimal, we resolved it by 
shifting our state storage to Postgres RDBMS (Relational 
Database Management System) which was able to handle the 
scale of CRUD (Create Read Update Delete) operations with 
all desired properties we wanted like consistent state, atomic 
operations etc. Thus, the flaw of race condition was eliminated, 
and alerting feature operated smoothly in the AIOps platform. 

b) Migration to TSDB: This was a major step taken to 
migrate from conventional CSV file-based storage to a highly 
scalable TSDB as discussed in subsection B. Due to this feature 
store, we reduced the delays in data fetching by eliminating 
excessive file I/O operations and data post-processing steps. 

c) Message queue based event-driven architecture: The 
alerting delays were still unacceptable (>10 mins) after b) in 

which the alerting was tightly coupled with Airflow DAGs and 
operational delay (say, ETL lag, resource unavailability, etc) 
cascaded to alerting lag. In the revamped architecture (Fig. 5), 
we send message with relevant metadata for alerting to a queue 
from the inference function whenever anomalies are detected 
which eliminated the redundant alerting DAG. This enqueue 
triggers a low memory serverless compute instance that can 
scale horizontally (high concurrency) based on load. Due to the 
relevant metadata provided, no additional API calls to TSDB is 
made. They directly perform the alerting check and send alert 
metadata to another queue if condition for alerting is passed. 
Using this separate queue, we send alerts in a desired sequential 
manner using high memory compute instances with single 
concurrency (no scaling required to send notifications in correct 
order) but high batch size to process the queue at low latencies. 
This reduced the latency to < 1 minute which is near real-time. 

Apart from the reduction in a, we reduced ack by providing 
a customized link to the UI in the alert message which was 
dynamically generated while processing an alert. The message 
has relevant details of the issue allowing the operator to land at 
the correct metric at the alert timestamp and so saves their time. 

Fig. 4. a (top) and reduction in t delay (bottom) (Refer Table III) 

TABLE III.  X-AXIS TICK LABEL REFERENCE FOR FIG. 4 

Label Definition 

A1 CSV cloud storage with Airflow DAG 

A2 CSV	cloud	storage	with	Airflow	DAG	and	Postgres	for	state 

A3 TSDB	with	Airflow	DAG	using	Postgres	for	state	

A4 TSDB	with	Message	queue	based	event-driven	architecture	
using	Postgres	for	state	

B1 CSV	cloud	storage	with	1xn	approach	

B2 TSDB	with	dependency	graph	without	filtering	

B3 TSDB	with	dependency	graph	with	filtering	

B4 TSDB	with	dependency	graph	with	filtering	and	vectorized	
operations	

 



E. Scalability in Root Cause Analysis 
Operators trace the root cause of an identified issue in high-

pressure environments during time-critical on-call activities 
scheduled outside regular work-hours to resolve and notify 
stakeholders. Automatic RCA feature is thus an essential feature 
of AIOps for their triaging activities as it can greatly reduce t in 
(1). RCA involves large-scale time-series correlation 
calculations which must be performed optimally. Initially, we 
suboptimally correlated the concerned metric with all the time-
series available with O(n) complexity (~4 minutes for 50 time-
series). To improve efficiency, we filtered and performed only 
required correlations using dependency graph (a hierarchical 
topological graph representing the entire system service 
dependencies) to avoid redundant calculations of unrelated time-
series. RCA took >2 hours for the large-scale 2nd use case as 
there were high latencies in handling CSV files (I/O) and in data 
processing while calculating these time-series correlations. 

Since RCA has to work at scale (>100K time-series), 
migration to TSDB along with dependency graph (hierarchical 
representation of service dependencies) helped reducing 
complexity to O(h * L) where ‘L’ is the average number of time-
series in one level of graph and ‘h’ is the the total height of graph 
where h~log(n) on average case. The latency reduced to ~20-30 
minutes. We further optimized RCA by writing custom filtering 
queries in TSDB to only fetch the anomalous time-series to 
eliminate redundant calculations. This reduced latency to <10 
minutes. Finally, using vectorized approach for correlation 
calculation resulted in latency dropping to <2 minutes i.e., near 
real-time (refer Fig. 4, Table III). Here, a customized single 
query was used to fetch an aggregated filtered time-series matrix 
from TSDB. The complexity remains same as O(h * L) but this 
implementation reduces the ‘L’ part due to multiple small units 
calculated simultaneously since it uses internal hardware 
parallelism to achieve quick results. So, the program behaves 
like O(h) but this is subject to the scale of data. For further 
scaling up, upgradation of hardware in our instances (high core 
CPU or GPU) is required to take advantage of vectorization. 

RCA includes dependency graph traversal where we only 
traverse next level nodes (services) if that path has high anomaly 
correlation with the concerned metric. The operator can set the 
Pearson correlation threshold and control the traversal beam 
width (number of paths to follow) which controls the number of 

RCA hypothesis. This is practically important as the highest 
correlated time-series might not be the root cause but the metric 
present at say, 3rd rank might be. Apart from these t reduction, 
we also provide graph traversal visualizations to the operator to 
trace the root cause path more effectively reducing the overall t. 

V. CONCLUSION AND FUTURE WORK 
According to the current trend, new generation applications 

are following microservices architecture having complex 
infrastructure and managing that has been a challenge for the 
operators. AIOps brings the power of AI to operations data to 
assist operators in taking better decisions and to achieve lower 
MTTR. From the perspective of real-time, streaming and big 
data-based solutions like Spark can be effective but considering 
the need for local or single AI models for specific metrics, such 
Spark based processing may not be viable and cost effective. 
Achieving scalability and cost effectiveness for such real-time 
solution is challenging, but the solutions we have proposed and 
built helps to achieve a balance with cost and performance. 

Future work involves automatic model training,  
thresholding, deployment, and fine tuning based on feedback for 
continuous improvement to reduce false positive alerts (noise). 
Utilizing model that generalizes pattern based on multiple time 
series analysis is also seen as a challenge and research is 
happening towards deep learning models with transformer-
based time-series forecasting to improve generalization. Model 
explainability to provide proper justification to IT operators will 
also help them to understand why AI made a specific decision 
and in turn, help to receive feedback for improving model 
performance. For RCA, caching reports to further improve 
operations in real time is being considered and we’re also 
researching and implementing RCA at scale using application 
logs, apart from using metric time-series correlations. 
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