Building a scalable real-time ML inference platform
for AIOps

Praveen Manoharan Nilesh Nayan
Applied Al & Discovery Applied Al & Discovery
Comcast India Engineering Comcast India Engineering
Center (I) LLP Center (I) LLP

Chennai, India
Nilesh Nayan@comcast.com

Chennai, India
Praveen_Manoharan@comcast.c
om

Abstract—In this paper, we present the method of building a
scalable, real-time inference platform for large-scale time-series
anomaly detection and root-cause analysis solutions, built as a part
of Al For Operations (AIOps) tool. AIOps is a tool built to ease the
manual and time-consuming activities of DevOps engineers
involved in monitoring and troubleshooting production systems.
Such a system has to be operated in real-time to detect anomalies
in a plethora of time-series metrics and logs from the productions
systems in order to provide timely alerts and possible root causes
for quick remediation and thus requires a low-latency operation.
This system must be scalable for the vast amounts of data involved
for ETL and ML inference jobs that the solution needs. In this
work, we show how we engineered and scaled up the Al research
POC to a solution that supports a massive search engine system,
where we achieved reduction in latency by 30x. We also evaluate
different tools for inference such as Apache Airflow, Serverless
REST API and Spark engine and demonstrate our improvements
achieved and our estimations of these different commonly used
platforms for ML inference, in terms of feasibility and cost for an
AIOps solution.

Keywords—AIOps, time-series, anomaly-detection, root-cause
analysis, model inference

I. INTRODUCTION

“AlOps” [1] is a portmanteau of Artificial Intelligence (Al)
which comprises Machine Learning (ML) and Deep Learning
(DL) and Information Technology (IT) Operations. As per
Gartner’s 2022 Market Guide [2], AIOps is going to be future of
IT Operations. AIOps platforms analyze application, system
metrics, telemetry events and application logs to identify
patterns and trends to understand the behavior of the system.
AlOps platform is designed with the following characteristics
[3]1[4]: (1) ability to ingest and analyze cross-domain data, (2)
perform dependency graph analysis across different stacks and
services, (3) correlate events to understand the patterns to detect
incidents, and (4) predict possible hypothesis towards the root
cause analysis and recommend solutions. AIOps refers to the
timely identification of IT operation issues using AI/ML. While
MLOps refers to the deployment and operations of ML models
and DevOps refers to software development and operations,
AlOps is different from them as its applicable to MLOps or
DevOps to make them more robust and cost effective (Fig. 1).

Aaditya Sharma Aravindakumar Venugopalan
Applied Al & Discovery Applied Al & Discovery
Comcast India Engineering Comcast India Engineering
Center (I) LLP Center (I) LLP

Chennai, India
Aravindakumar Venugopalan@c
able.comcast.com

Chennai, India
Aaditya_Sharma@comcast.com

Availability of mission critical applications are crucial, and
any outages can directly influence business revenue and
customer satisfaction. A reliability engineer may need to get into
a crisis call in the middle of the night to fix a critical issue in the
field. AIOps is designed to act as a third hand to the engineer to
help in resolving the issue faster and thereby, reducing mean
time to failure (MTTF) and to resolve (MTTR) the issue [5].
AlOps operates with continuous time series data. Since the
volume of data processed is huge and the system must operate
in real time, scalability of the system across different stages of
AIOPs is critical. This paper discusses on resolving challenges
related to scalability and the best practices for achieving a highly
scalable real-time AIOps platform.

The rest of the paper is organized as follows. In Section II,
we discuss related work in literature on AIOps and scalability.
In Section III, we explain the scope and requirements of the
AlOps product and the various problems and challenges that we
encountered in the practical real-life implementation. In Section
IV, we propose solutions and elucidate how we tackled each of
the problems present in different components of our AIOps
platform. Finally, in Section V, we provide our conclusion and
also discuss other potential options for further optimizations and
our future evaluation considerations with respect to building a
scalable real-time AIOps product.

Artificial Intelligence

IT Operations

Machine Learning
Deep Learning

Metrics
"Observability" Logs
Traces

Big Data

Fig. 1. Al For IT Operations (AIOps)

II. LITERATURE REVIEW

The different features and requirements for an AIOps
solution have been discussed in multiple forums and in literature
such as [3] and [4]. These works discuss the impact of AIOps
product in an IT organization and the value that it brings to
DevOps teams, the quality of service, reduction in operations
cost, and customer satisfaction achieved. Only very few works
discuss the challenges involved in bringing valuable research
knowledge into a scalable viable product that can add real
business value for an organization.

As we can see from [6] where a systematic mapping study
has been done on the various literary works available related to
AlOps, we see how the focus has been on building different
valuable solutions in the IT Operations space such as Resource
Provisioning, Failure Detection, Failure Prediction, Root Cause
Analysis, Prevention and Remediation that are used in the
AlOps platform development. Such solutions have been offered
by multiple AIOps platforms that may offer a subset of these
solutions or all of them. One such AIOps platform development
can be seen in [7] where an AIOps product has been built to
address solutions ranging from Anomaly Detection and Smart
Alerting, Automatic Root Cause Analysis (RCA) from Logs,
RCA through multiple Metric Correlations using dependency
graphs of services, Auto-remediation and Failure Prevention
solution, Intelligent Orchestration for Cost Efficiency and
Release Management.

As noted in [2], the main barrier for AIOps platforms is the
difficulty in measuring the value created from the usage of such
products. To fully measure the impact created by such a tool, the
tool has to be designed to operate at scale at nominal costs and
offer quick results for the operators to find meaning in the
adoption. But it is to be noted that enterprises are rapidly
adopting AIOps solutions; and the costs and complexities
involved in managing, storing and handling data at scale are still
major challenges for AIOps platform developers. In [8], the
authors discuss some of the real-world challenges that they faced
while implementing their AIOps solution in production and
discuss the research innovations performed to create a few
successful AIOps solutions that they built in their products. The
various challenges related to data quality, efficiency of Al and
ML, limitation in use case availability, etc. are also reviewed in
detail in [9].

This paper discusses the practical challenges involved in
building an AlIOps product, specifically in terms of
infrastructure scalability, that must be handled while building
such innovative ML products that most of the works in literature
do not discuss explicitly. This way, we complement the existing
research works by providing a more detailed paper on the
various techniques and solutions we have engineered to solve
some of the complexities involved in building a production-
grade AIOps platform from a research Proof-of-Concept (POC).
We have evaluated different tools and engineering solutions
while trying to scale up the product to handle large-scale loads
involved in an application that caters to the massive search and
browse engine workloads of a real-world commercial product
and have presented the results that we obtained.

III. SCALABILITY CHALLENGES

The AlOps solution requires a highly scalable, real-time
operations in multiple verticals such as: (1) data ingestion or
extract-transform-load (ETL) pipeline, (2) Machine Learning
(ML) model inference, (3) alerting or notification scheme, and
(4) root cause analysis and reporting solutions. There are
multiple challenges to be addressed in implementing these
solutions for the product to be effective.

Operation metrics are time-series in nature as the telemetry
data are collected from across multiple services at different
instances in time. The nature of the time-series data vary vastly
from metric to metric, and they are also dynamic in nature and
can change over time. Most of the system metrics are collected
from multiple sources, and such metrics collected and stored in
an operations data collection and monitoring solution like
Prometheus [10], have different labels which denote the
metadata for identifying the source of the time-series. In real
production systems such as the one we handle, we observe that
one metric can have even 1000 time-series data or more at a
given instance, which are collected from different sources. If the
sources are dynamically destroyed and created, such as in the
case of Kubernetes Pods when a new release deployment takes
place, the existing metric time-series data from the destroyed
instances cease to appear and new ones appear. Thus, over a
period, the number of unique time-series data within a single
metric keeps growing. We also observe that some metrics
disappear and re-appear after some time, especially in case a
service is restarted after a maintenance period. We require
operations monitoring on 100s or more of such metrics, which
is a perfect example of the extent of complexities involved in the
data management.

To counter these challenges, data ingestion or ETL pipeline
must be scalable to support such large volumes of data. It should
be a low-latency streaming solution, but operations metrics
stored in databases like Prometheus can only be fetched by
querying data over its REST API as there is no push mechanism
to send the telemetry data collected to some external streaming
service. These offer limitations in the choice of ETL service.
Also, performing a very large number of metric queries to the
source metric storage can overwhelm the system, leading to
increased latency, more frequent HTTP request failures, and
slow response times in dashboards used by operators manually
monitoring other system metrics. Thus, the ETL operation must
prevent such client-side resource (CPU or memory) overloading
too.

Also, the nature of the time-series in terms of magnitude,
periodicity or seasonality, trend, stochasticity, etc., vary from
metric to metric and between the different time-series within a
metric. Hence, we don’t have a “one-fit-for-all” ML model
solution for all time-series data. Since the operations data is
unlabeled by default, unsupervised time-series anomaly
detection algorithms are used to fit on the data over a suitable
time period, to capture the trends and seasonality present in the
data. By allowing an annotation option through a user-interface
(UI), we also make use of supervised classification algorithms
to detect anomalies using the labelled anomalous points. A
plethora of algorithms are available to fit on multiple metrics
and even if a model fits on a particular pattern of data, when

deployed for inference on multiple time-series metrics data, the
threshold chosen for detecting anomalies using the anomaly
score computed by the model needs some careful setting for
each of the data. Therefore, even if our solution enables us to
choose certain trained models to be deployed for multiple time-
series inference, we still may have to fine-tune the model or
adjust the thresholds for each of them by having a human-in-the-
loop for more accurate inference. A system with automated
unsupervised model training and inference can still benefit from
a feedback mechanism for fine-tuning models or adjusting
thresholds that improves the overall performance in terms of
prediction accuracy. Thus, it is difficult to go for a distributed
environment like Apache Spark [11] for this operation as there
is no single model used for multiple data inference (single big
and complex task), rather multiple fine-tuned specific models,
performing inference on individual or a small subset of related
data. The conclusion — it is not straightforward to use that
distributed framework for inference.

The main goal of an AIOps tool is to provide operators with
timely alerts that notify the team of an anomaly in some
monitored metric that helps them attend to and rectify quickly
before a major outage occurs. Our infrastructure has to be robust
in handling the rules for checking and sending alerts and must
be scalable to support the operations for all inference jobs that
would be making predictions every minute. It must have a very
low latency and send alerts instantly.

With the addition of features that are targeted to reduce the
MTTR of the operators such as RCA solutions that correlate
detected metric anomalies with error log trends or other metric
anomalies, we have a need to perform this at scale and send the
RCA report instantly for a quick fix. A naive, simple solution of
sequentially checking the anomaly trend correlations with every
metric (ignoring the complexities involved in fetching a block
of data from feature store and in computing correlation
coefficient) will have a linear time complexity of O(n), where
‘n’ is the number of time-series metrics. Since ‘n’ could be as
large as one million and this computation has to happen for an
anomaly detected on a selected metric at a selected minute,
getting a quick RCA report for an operator to act upon, is highly
difficult in this setup. It becomes more impractical as we can
have multiple alerts and this can occur every minute. Thus, we
requirc a better optimal approach for handling such
computations.

The following Table I displays the initial operational
statistics of the actual use cases 1 and 2 which are explained in
Section IV. The numbers represent the scale at which the AIOps
platform had to operate for real-time operations at reduced
latencies and thus presented us with the challenges during the
initial POC stage that we just discussed.

TABLE I. INITIAL OPERATIONAL STATISTICS
Use Data Average Airflow Tasks (Per Minute)
Case | Metric sTeii"”i:s- ETL Inference Alerting
1 1 961 3x1 3x1 4x1+1
2 38400 | 73633* 3 x 38400 3 x 8400 4 x 8400 + 1

& Without including count of time-series in the metrics removed from the 38400 metrics

IV. SOLUTION METHODOLOGY AND RESULTS

As the tool must operate in real-time, there is a requirement
to periodically fetch data from source and perform inference on
them. Thus, we need a scheduler. Initially, we used a cron-based
scheduled script to fetch the operations data, transform and store
the results in comma-separated values (CSV) files in disk in a
monolithic architecture where a Ul dashboard, the training,
inference and alerting jobs (cron), and a rules engine, were all
hosted within the same instance and coupled tightly together. As
this solution limits the operations to just one instance, to deploy
a solution in cloud that is independently horizontally scalable
and loosely coupled, we went for a microservices architecture
with separate services for different components. The various
services perform their tasks independently and access shared
resources such as the feature store and metadata store. To
streamline the operations, we used a workflow management tool
Apache Airflow [12] which was used as a scheduler and an
orchestrator of various tasks such as data ingestion, log data
mining and log metrics creation, model inference, alert rules
evaluations and notifications, by dynamically defining tasks for
different use cases and metrics as Directed Acyclic Graphs
(DAG). This migration from a monolithic to a microservice
architecture hosted in cloud, helped us have the AIOps solution
built for simpler use cases with few metrics (say, <100). In
particular, we used it to monitor the load of prediction requests
made to a computer vision ML model deployed in a home
security product (use case 1). This helped DevOps team detect
anomalies in the observed seasonal load pattern and find out root
cause error logs for immediate remediation. However, we faced
the scalability challenges (Section III) when we onboarded use
case 2, to monitor the operations of different microservices
available in a large-scale relevance engine application that
powers the search and browse features in products like voice
remote, personalized content discovery services, etc. The
following subsections discuss how we addressed the different
challenges and the performance gains achieved in building the
Al powered operations monitoring and automated RCA tool
having an impactful usage in IT observability domain.

A. Scalability in Data Ingestion

The scheduling interval used in Airflow was one (1) minute
and so the data ingestion task was expected to get completed in
<1 minute. But, when we ingested data from a large-scale
system, we ended up with more than 38400 metrics that resulted
in 3 x 38400 data ingestion tasks. As we had to train and deploy
models for ~1050 time-series metrics per data-center (we had 8
such data-centers), we had a very large number of tasks for
model inference and alerting as shown in Table 1. Even though
Airflow is theoretically capable of handling such loads,
practically with limited number of worker nodes, schedulers,
and worker resources, especially when operated in a managed
cloud environment, Airflow gets overwhelmed and freezes.
Such a large number of metric requests cannot be handled by the
client Prometheus or Thanos instance too.

We initially dropped about 74% of the metrics from the total
based on the understanding that they carry redundant
information captured by other metrics or were not significant for
the operators. This reduced count of metric is still not feasible
for data ingestion and so we worked on optimizing the number
of queries we make to the HTTP endpoint by combining metric

queries using clauses such as group by, and thereby increasing
the number of time-series per metric query and thus ending up
with the same total number of metric data that we want to ingest
and monitor. This way, we reduced the number of metrics
significantly by up to a further 97% but we found that certain
queries are computationally expensive at the client end and split
some metrics to finally end up with 425 metrics — a 95%
reduction in number of metric queries that we have to make. This
way, we have provided a user-configurable settings for ingesting
metric data that can perform the ETL task without overloading
both the client side as well as the Airflow environment. We also
reduced the count of tasks to 426 per minute by combining them.

As we moved from CSV files in cloud object storage to a
feature store more suited for metric time-series as explained in
the next section, where the write operation is optimized by
having a separate service that is independently scalable and
performs parallel write through multiprocessing over multiple
cores, we achieved a reduction in ETL latency for a single metric
for a single DAG Run from ~20 minutes to ~10 seconds which
is almost ~99% improvement. The CSV-based feature store
required additional overheads of reading and writing files and
offered limited concurrency because of an aggregation that we
also do over all the fetched metric time-series.

However, to have an automated way of onboarding a client
application without the need to specify optimal configurations,
we are setting up an instance of Thanos at our end to replicate
the data at the client side by having a sidecar container at the
client end that pushes the metrics data to this instance. This will
be configured to scale independently depending on the load of
ETL activities, thereby not affecting any client operations. This
ensures a smooth scalable, low-latency data ingestion pipeline
for transforming and storing as time-series data as needed for
visualization and ML models.

B. Scalability in Feature Store

The choice of a time-series database (TSDB) as a feature
store is crucial from the perspective of scalability, number of
read-write threads hitting the feature store, and the required
latency in read-write operations. Also, the database used for
feature store is expected to scale up horizontally according to the
number of read-write requests made and vertically according to
the required granularity and period of data per request.

e TSDB vs other DBs: Compared to other databases,
TSDBs provides faster and economic read-write
operations for time-series data with proper data schema
specific to time-series data. They also help in
performing efficient aggregation and imputation queries
over time-series data. Some TSDB solutions are
optimized for tier-based data access where read
operations are optimized for both recent and historical
data while write operations are optimized for recent
data, making both ingestion and reading faster, along
with a common query engine for all the storage tiers.
TSDB are timestamp indexed, making them efficient for
large-scale sequential data. They also avoid data
duplication and maintains data order despite ingestion
request order. This allows clients to run parallel workers
for the data ingestion jobs without worrying about the
order in which the jobs are executed.

o Serverless vs Server-based: Serverless TSDB allows us
to have a highly available database service without
having to maintain a server — this is becoming a
popular choice in cloud-native deployments. Serverless
DB services can scale as per the fluctuations in demand
and can process millions of queries per day.

An application programming interface (API) built as a layer
between AlOps platform as a client and TSDB as a server is used
to transform and load data to the TSDB such that it can divide
the data to run multiple parallel processes based on available
resources on the host. The API layer was built in such a way that
it could scale horizontally depending upon the number of
requests made for different activities like (1) pushing metric data
from data ingestion tasks, (2) pulling data for inference jobs or
showing in dashboard user-interface (UI) for visualization, etc.,
(3) pushing predictions data from inference jobs, and (4) pulling
predictions data for checking alerts or for RCA. A scalable
container orchestration service is used to deploy, manage, and
scale the containerized application on a cluster with a serverless
configuration that helps us achieve an interface that is
independently scalable with respect to the load of read and write
operations, which in turn depends on the number of use-cases
and metrics configured for real-time anomaly inference. The
API layer processes the data for writing and pushes the records
in batches through multiprocessing over available cores by
dividing the data into equal length chunks. TSDB vl
implementation does not maintain common attributes for
dimensional values common for a particular time-series, causing
highly redundant write operations, while TSDB v2
implementation uses common attributes saving writing costs
and improving latency in write operations. The improvements in
read and write latencies with the changes made in the feature
store backend have been presented in Table I1.

TABLE II. OPERATION LATENCY IN DIFFERENT FEATURE STORE FOR A
SAMPLE 25KB DATA PROCESSED PER REQUEST
Database
Operation i
P Simple cloud TSDB vl TSDB v2
storage

read =1s =1s < 10 ms
write = 15 min =36s 3s

C. Scalability in Model Inference

As we have multiple models used for inference for multiple
time-series metrics, we need a low-latency, real-time, scalable
solution. When we used Airflow for this task, we performed all
the heavy activities like loading the data and model in memory
and performing model inference within Airflow tasks. Since
Airflow is designed primarily to serve as an orchestrator and not
intended for heavy tasks, the inference performance was poor.
The following sections discusses the performance
improvements obtained in moving from Airflow to further
optimized, scalable solutions that we designed and deployed.

a) Initial Airflow-based Inference (I1): From Fig. 2, we
observe a very large memory consumption of ~1823 MB for a
single cold-start (typically ~4 weeks) prediction as the task
loads model and data in memory, performs anomaly predictions

and saves results back to feature store. To accommodate such
scenarios of peak memory when a new data is scheduled for
detecting anomalies, we had to restrict the number of tasks per
worker node in Airflow as all tasks within a worker node share
the resources. If resources aren’t enough, tasks get killed and
the DAGRun fails. Therefore, I1 limited the task concurrency
which in turn increased the execution times of Airflow DAGs.
We also observed a significant latency of 4s for a single real-
time inference task. To avoid overwhelming Airflow, we
reduced the number of tasks by having concurrency at metric
level instead of at individual time-series level. So, we had to
perform inference for each scheduled time-series metric present
in a metric linearly, as worker nodes have limited cores which
are already shared amongst tasks. This leads to large delays as
the individual inference latency is scaled linearly by the number
of time-series data configured with anomaly detection models
trained, at different granularities and aggregations.

2000 Condition

M Cold Start
M Real-Time

1500

1000

Peak Memory (MB)

500

12 13

40

30

20

10

0 ——
n 12

Architecture

Latency (s)

13

Fig. 2. Memory (top) and Latency (bottom) in Airflow Task in I1, 12, 13

2000 Condition 50
W Cold Start
B Real-Time

1500

1000

500 -
0
13 13

Architecture

Peak Memory (MB)
Latency (s)

0
Fig. 3. Memory (left) and Latency (right) in Serverless Instance in I3

b) Inference through scalable, serverless REST API
compute instances (12): In this modification to I1, we deployed
2 serverless compute instances that are independently
horizontally scalable based on the number of function

invocations (load). One gets triggered when new models are
saved and deployed in an object store and downloads them into
an elastic storage which provides a network file system (NFS)
interface. The second loads models from this storage into
memory and performs the inference job when invoked via
HTTP REST API, reads the metadata of the metrics and models
from the API request and sends the results back to the client to
save into feature store. This function also caches the models to
quickly serve in subsequent invocations of the same model and
only has to load from the storage when a new version of a model
is deployed. From Fig. 2, we can see that this architecture has
reduced the peak memory consumption in Airflow tasks during
cold start significantly and the model inference job is offloaded
out of Airflow. This helps us have an Airflow environment with
more concurrent operations. The reduced load also makes the
system more reliable and helped us in saving Airflow costs by
upto 55% as we can reduce the resources of worker nodes.
However, the latency of the overall DAGRun was still
significant even though the individual task latency dropped by
50% as the inference job for each time-series still had to be
executed sequentially in the Airflow tasks as each inference job
is a blocking operation and the task waits for API response that
needs to be saved to feature store before going to the next job.

c) Inference through scalable, serverless message queue
triggered compute instances (13): The motivation on further
improvement in architecture from 12 was to reduce the latency
of the overall operations by having more concurrency in the
individual time-series inference jobs. For this, we replaced the
REST API trigger with a message queue based event-driven
architecture for the 2" serverless compute to have non-blocking
invocations decoupling Airflow from model inference step.
Loading data from feature store, saving predictions back and
sending alert checking messages to its queue, are handled
within the compute instances making the Airflow tasks fast and
extremely light-weight as can be seen from Fig. 2 that shows an
execution time of ~Is and peak memory consumption of
~180MB. To avoid race condition of making multiple inference
job invocations before the previous job is completed for a given
time-series, the status of the running state and the last predicted
timestamps are stored and handled separately through a
relational database, making the entire inference job scalable,
reliable and fast. The operational costs involved in the
serverless instances offset the cost savings obtained from
Airflow operations. The latency and peak memory
consumption in the serverless compute functions do not exceed
any limits that can cause any deterioration in performance as
seen from Fig. 3. Due to the decoupled architecture, the
inference jobs have more concurrency and were observed to
complete within 1 minute for the entire metric, which helped in
achieving 30x reduction in latency from I1 architecture.

D. Scalability in Alert Notification Scheme

The major objective of AIOps is to reduce the crucial MTTR
metric for operation teams in their triaging activities [5] since its
reduction directly correlates to customer experience and revenue
in terms of customer retention or acquisition. The most intuitive
way to reduce MTTR is by making our AIOps platform
operations (near) real-time by sending timely alerts and reports

to operators if abnormality is observed. This reduces the delay
between the actual issue occurrence and the acknowledgement
by the concerned team for triage. In this subsection, we discuss
the approaches taken to evolve our platform for scalability with
respect to this alerting need. We can roughly estimate MTTR as

o+a+ack+t=MTTR (1)

o — AlOps platform operations delay (ETL, Inference),
a — Alerting lag,

ack — Operator acknowledgement delay,

t — Triage delay

The first part of (1) i.e., o has been discussed in earlier
subsections. In this subsection, we focus on reducing a and ack.
While the initial POC had an acceptable delay of ~1-5 mins
w.r.t. alert notifications, we faced the following critical
challenges while onboarding the large-scale application:

1) Huge delays in alerting: Alerting delay a in (1) has to be
as low as possible (near real-time) so that an issue is
acknowledged quickly to start the triaging activity. Using CSV
files in cloud store, we faced delays of over 30 mins for getting
alerts, which dissolves the purpose of our tool for reducing
MTTR. Majority of this delay was introduced by file
input/output (I/0) and network delays in API calls. Also added
to this, the nature of data (time-series) stored in CSV was not
ideal for the scale of operations we target since we require
additional post-processing for using that data. All these delays
cascaded when we used Airflow scheduler for alerting too,
where the the limited worker resources get blocked out for other
critical functions and so affected the total latency.

2) Race condition: We maintained states essential for
alerting feature (like last alerted timestamp, pause status and
duration if alert is paused) in CSV files stored in cloud object
storage. When multiple Airflow tasks access the state file
simultaneously (race condition), it causes inconsistencies in file
leading to EOF (End of File) errors while parsing a read CSV
file, being updated at the same time.

For these observed scalability challenges, the following
approaches were adopted to tackle them (refer Fig. 4, Table III):

a) Using RDBMS for states: Since using CSV files for
maintaining alerting states was not optimal, we resolved it by
shifting our state storage to Postgres RDBMS (Relational
Database Management System) which was able to handle the
scale of CRUD (Create Read Update Delete) operations with
all desired properties we wanted like consistent state, atomic
operations etc. Thus, the flaw of race condition was eliminated,
and alerting feature operated smoothly in the AIOps platform.

b) Migration to TSDB: This was a major step taken to
migrate from conventional CSV file-based storage to a highly
scalable TSDB as discussed in subsection B. Due to this feature
store, we reduced the delays in data fetching by eliminating
excessive file I/O operations and data post-processing steps.

¢) Message queue based event-driven architecture: The
alerting delays were still unacceptable (>10 mins) after 5) in

which the alerting was tightly coupled with Airflow DAGs and
operational delay (say, ETL lag, resource unavailability, etc)
cascaded to alerting lag. In the revamped architecture (Fig. 5),
we send message with relevant metadata for alerting to a queue
from the inference function whenever anomalies are detected
which eliminated the redundant alerting DAG. This enqueue
triggers a low memory serverless compute instance that can
scale horizontally (high concurrency) based on load. Due to the
relevant metadata provided, no additional API calls to TSDB is
made. They directly perform the alerting check and send alert
metadata to another queue if condition for alerting is passed.
Using this separate queue, we send alerts in a desired sequential
manner using high memory compute instances with single
concurrency (no scaling required to send notifications in correct
order) but high batch size to process the queue at low latencies.
This reduced the latency to < 1 minute which is near real-time.

Apart from the reduction in a, we reduced ack by providing
a customized link to the Ul in the alert message which was
dynamically generated while processing an alert. The message
has relevant details of the issue allowing the operator to land at
the correct metric at the alert timestamp and so saves their time.

30
25

20

a(min)

Al A2 A3 A4
120
100
5
E
S w0
3
3
3
c %
c
S
g 4
E >
20 \
. \&\\ﬂ
B1 B2 B3 B4

Architecture

Fig. 4. a (top) and reduction in ¢ delay (bottom) (Refer Table III)

TABLE III. X-AXIS TICK LABEL REFERENCE FOR FIG. 4
Label Definition
Al CSV cloud storage with Airflow DAG
A2 CSV cloud storage with Airflow DAG and Postgres for state
A3 TSDB with Airflow DAG using Postgres for state

TSDB with Message queue based event-driven architecture

Ad using Postgres for state

Bl CSV cloud storage with 1xn approach

B2 TSDB with dependency graph without filtering

B3 TSDB with dependency graph with filtering

B4 TSDB with dependency graph with filtering and vectorized

operations

Data Ingestion

Time-Series

,, Scheduled
Database
Elastic

Script
Container

Orchestrator ‘

Data ETL
]

,‘—9

Metrics
Data Source

Dashboard 1

Operator) R
Elastic Airflow Scheduler
Server
Instance
Log
Mining

check

For
Operator Logs
ul . Data Source

Cloud object

Inference |hference

Alerting \

Postgres
RDBMS

Elastic
Serverless
Alert check
'
'
—&

1 Alert check
'

&

Alert post
job
queue

Elastic '
Serverless |
Alert post |

Elastic 1 IoP
Serverless ! dueue
For

Operator
triage

Inference |

'
'
'
: Alert rules
'

store

! Elastic model
caching job

'
Cloud store |

'
'

'

'

'

check engine '

'

'

'

model cache ! :
! '

Fig. 5. Scalable Real-Time AIOps Platform Architecture

E. Scalability in Root Cause Analysis

Operators trace the root cause of an identified issue in high-
pressure environments during time-critical on-call activities
scheduled outside regular work-hours to resolve and notify
stakeholders. Automatic RCA feature is thus an essential feature
of AlOps for their triaging activities as it can greatly reduce ¢ in
(1). RCA involves large-scale time-series correlation
calculations which must be performed optimally. Initially, we
suboptimally correlated the concerned metric with all the time-
series available with O(n) complexity (~4 minutes for 50 time-
series). To improve efficiency, we filtered and performed only
required correlations using dependency graph (a hierarchical
topological graph representing the entire system service
dependencies) to avoid redundant calculations of unrelated time-
series. RCA took >2 hours for the large-scale 2™ use case as
there were high latencies in handling CSV files (I/O) and in data
processing while calculating these time-series correlations.

Since RCA has to work at scale (>100K time-series),
migration to TSDB along with dependency graph (hierarchical
representation of service dependencies) helped reducing
complexity to O(h * L) where ‘L’ is the average number of time-
series in one level of graph and ‘h’ is the the total height of graph
where h~log(n) on average case. The latency reduced to ~20-30
minutes. We further optimized RCA by writing custom filtering
queries in TSDB to only fetch the anomalous time-series to
eliminate redundant calculations. This reduced latency to <10
minutes. Finally, using vectorized approach for correlation
calculation resulted in latency dropping to <2 minutes i.e., near
real-time (refer Fig. 4, Table III). Here, a customized single
query was used to fetch an aggregated filtered time-series matrix
from TSDB. The complexity remains same as O(h * L) but this
implementation reduces the ‘L’ part due to multiple small units
calculated simultaneously since it uses internal hardware
parallelism to achieve quick results. So, the program behaves
like O(h) but this is subject to the scale of data. For further
scaling up, upgradation of hardware in our instances (high core
CPU or GPU) is required to take advantage of vectorization.

RCA includes dependency graph traversal where we only
traverse next level nodes (services) if that path has high anomaly
correlation with the concerned metric. The operator can set the
Pearson correlation threshold and control the traversal beam
width (number of paths to follow) which controls the number of

RCA hypothesis. This is practically important as the highest
correlated time-series might not be the root cause but the metric
present at say, 3™ rank might be. Apart from these ¢ reduction,
we also provide graph traversal visualizations to the operator to
trace the root cause path more effectively reducing the overall ¢.

V. CONCLUSION AND FUTURE WORK

According to the current trend, new generation applications
are following microservices architecture having complex
infrastructure and managing that has been a challenge for the
operators. AIOps brings the power of Al to operations data to
assist operators in taking better decisions and to achieve lower
MTTR. From the perspective of real-time, streaming and big
data-based solutions like Spark can be effective but considering
the need for local or single AI models for specific metrics, such
Spark based processing may not be viable and cost effective.
Achieving scalability and cost effectiveness for such real-time
solution is challenging, but the solutions we have proposed and
built helps to achieve a balance with cost and performance.

Future work involves automatic model training,
thresholding, deployment, and fine tuning based on feedback for
continuous improvement to reduce false positive alerts (noise).
Utilizing model that generalizes pattern based on multiple time
series analysis is also seen as a challenge and research is
happening towards deep learning models with transformer-
based time-series forecasting to improve generalization. Model
explainability to provide proper justification to IT operators will
also help them to understand why Al made a specific decision
and in turn, help to receive feedback for improving model
performance. For RCA, caching reports to further improve
operations in real time is being considered and we’re also
researching and implementing RCA at scale using application
logs, apart from using metric time-series correlations.

ACKNOWLEDGMENT

We would like to thank Nicholas Pinckernell and Mateja
Putic for their guidance and review on the architectural changes,
Hongcheng Wang and Abhijeet Mulye for helping us initiate the
project and find use cases, Gourav Gupta and Rajabhupati K S
for helping us with a deployment, and Kolammal
Sankaranarayanan for the editorial review. We are also grateful
to Jan Neumann, Amit Bagga, Harish Jayesh and Kannan
Subramaniam for their continuous support.

REFERENCES

A. Lerner. “AlOps Platforms”, gartner.com,
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
(accessed Dec. 8, 2022).

“Market Guide for AlOps Platforms”, gartner.com,
https://www.gartner.com/en/documents/4015085 (accessed Dec. 8,
2022).

S. J. Bigelow, “AlOps (artificial intelligence for IT operations)”,
techtarget.com,
https://www.techtarget.com/searchitoperations/definition/AIOps
(accessed Dec. 8, 2022).

B. Linders, “Artificial Intelligence for IT Operations: an overview”,

infoq.com, https://www.infoq.com/news/2021/07/Al-1T-operations/
(accessed Dec. 8, 2022).
“MTBF, MTTR, MTTA, and MTTF”, atlassian.com,

https://www.atlassian.com/incident-management/kpis/common-metrics
(accessed Dec. 8, 2022).

P. Notaro, J. Cardoso, and M. Gerndt, “A systematic Mapping Study in
AIOps”, Service-Oriented Comp. — ICSOC 2020 Workshops, pp. 110—
123, 2020, doi: 10.1007/978-3-030-76352-7_15.

[10]

(1]

[12]

H. Wang, P. Manoharan, N. Nayan, A. Venugopalan, A. Mulye, T. Chen,
and M. Putic, “Al for IT operations (AIOps) — Using AI/ML for
improving IT Operations”, Fall Tech. Forum Proc. NCTA Tech. Papers,
2022.

Y. Dang, Q. Lin, and P. Huang, "AIOps: Real-World Challenges and
Research Innovations", 2019 IEEE/ACM 4l1st Int. Conf. Soft. Eng.:
Comp. Proc. (ICSE-Comp.), 2019, pp. 4-5, doi: 10.1109/ICSE-
Companion.2019.00023.

L. Rijal, R. Colomo-Palacios, and M. Sanchez-Gordén, “AlOps: A
Multivocal Literature Review”, Artif. Intell. Cloud Edge Comp. Internet
of Things. Springer, Cham, pp. 31-50, 2022, doi: 10.1007/978-3-030-
80821-1_2.

Prometheus - Monitoring system & time series database, prometheus.io,
https://prometheus.io/ (accessed Dec. 8, 2022).

Apache Spark™ - Unified Engine for large-scale data analytics,
spark.apache.org, https://spark.apache.org/ (accessed Dec. 8, 2022).
Apache Airflow, airflow.apache.org,
(accessed Dec. 8, 2022).

https://airflow.apache.org/

